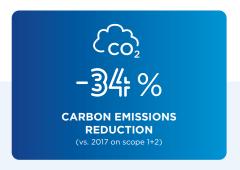
SAINT-GOBAIN 2023



OUR PURPOSE

MAKING THE WORLD A BETTER HOME.

OUR MISSION

Saint-Gobain designs, manufactures and distributes materials and solutions which are key ingredients in the well-being of each of us and the future of all.

WE ARE COMMITTED TO ACHIEVING NET ZERO CARBON EMISSIONS BY 2050

SAINT-GOBAIN

PERFORMANCE CERAMICS & REFRACTORIES

OUR MISSION

To design, develop and supply solutions and services for extreme operating industrial conditions. Our engineered ceramics and refractory products are manufactured to the highest industrial standards and deliver enhanced performance while minimizing environmental impact.

CERAMIC SYSTEMS

The products and solutions for kilns and furnaces under Saint-Gobain Ceramic Systems are designed and developed for many applications to have consistent and long-term performance.

Our products are designed to withstand high temperatures (up to 2,500°C) and severe operating conditions.

Developed and manufactured to suit kilns and furnaces that are typically used in various industry segments.

SMART DESIGN

In-depth understanding of customer application & processes, science, design engineering / mathemathical modeling and R&D

PERFORMING PRODUCTS

Customized product design, shape & material for every application & industry, manufacturing & quality consistency

YOUR PARTNER

Worldwide sales & application team, installation supervision services, OEM collaboration, energy & emission assessment

CUSTOMER SUPPORT

Experienced, dedicated teams work closely with customers, either in person or remotely via the most advanced digital platforms.

KEY MARKETS & APPLICATIONS

WHITEWARE

Sanitary & Dinnerware Industries

AUTOMOTIVE

Hot stamping, particle filters, spark plugs, oxygen sensors

TECHNICAL CERAMICS

ELECTRONICS & SEMICONDUCTOR

Cathode Active Material (CAM for Li-ion) / SOFC / SOEC / MLCC / Anode Material for Li-Battery

CHEMICAL

Powder / Pharmaceuticals / Catalyst Support

ABRASIVES & GRINDING MEDIAPowder / Abrasive Grains

SANITARY & DINNERWARE

Our kiln furniture systems are designed and constructed of advanced silicon carbide (SiC) materials. Thinner, lighter and significantly stronger than traditional kiln furniture for meeting improved energy efficiencies in high temperature applications.

- Constructed of advanced silicon carbide
- Improved energy efficiencies
- Minimize mass
- Maximize strength
- Greater kiln capacity
- Reduced firing cycles

FEATURES

Reduced energy consumption

Optimum rate of capacity utilization

High flexibility

Excellent product quality

Very good thermal shock behavior

LO-MASS® SYSTEMS

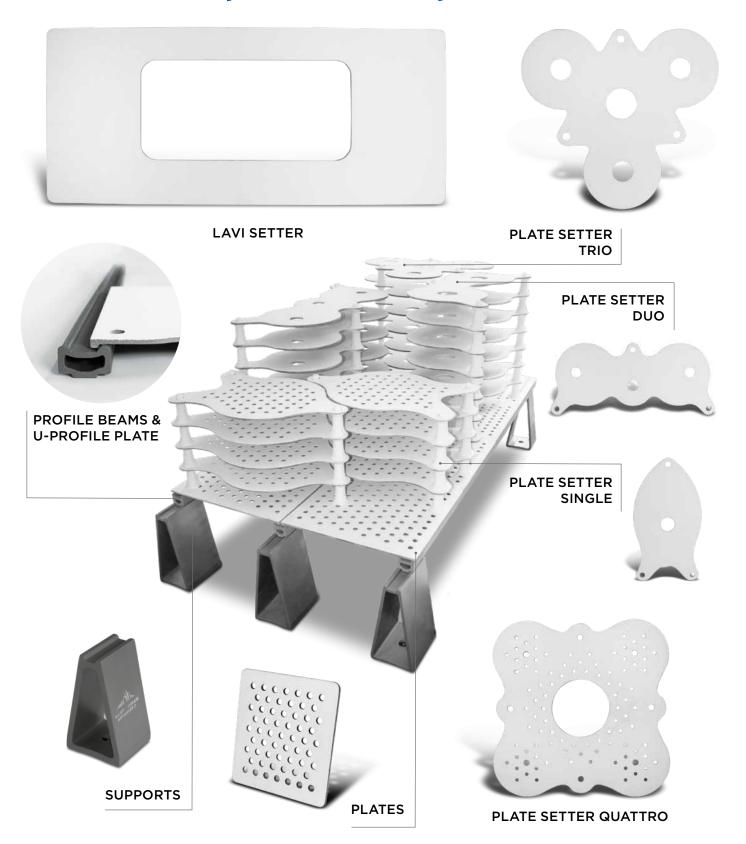
CRYSTAR® • HEXOLOY® SA • HEXOLOY® SE • N-DURANCE® SILIT® SK • SILIT® SKD

LO-MASS® components are customizable and flexible for whiteware and porcelain tableware firing systems.

Expertise in product design and customization for every type of kiln.

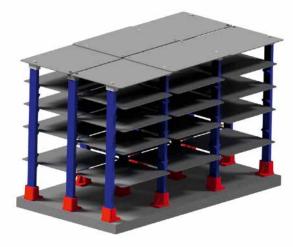
Energy efficiencies in high temperature applications

Minimize mass while maximizing strength

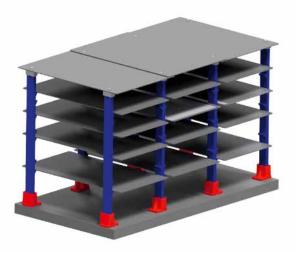

SAINT-GOBAIN PERFOR

THINNER, LIGHTER, STRONGER

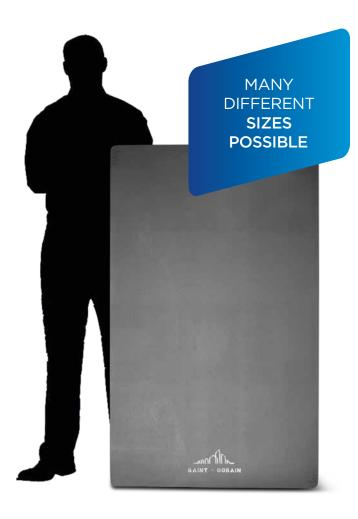
INNOVATION


In order to meet the constantly growing challenges of our customers, our innovative XXL plate size guarantees more products and less kiln furniture for your system. We offer this solution in the following key markets:

■ Whiteware


■ Technical Ceramics

Automotive


Abrasives & Grinding Media

SYSTEM WITH STANDARD PLATES

SYSTEM WITH XXL PLATES

(XXL) PLATES

N-DURANCE®

Saint-Gobain offers individual designs that are available up to approximately 1250 \times 900 \times 10 mm (49 \times 35 \times .974").

They are approximately two times larger than other advanced silicon carbide plates currently offered on the market.

BENEFITS

Increased setting space

Further reduction of structural supports and kiln furniture

Eliminate joints/seams underneath product

Flatness retention over large setting area

3 & 4MM PRODUCTS

CRYSTAR® • N-DURANCE®

4 mm thick slabs and plate setters are available in a variety of shapes. They are manufactured with our industry proven N-Durance® and Crystar® advanced silicon carbide materials used in

- Porcelain, Dinnerware & Sanitaryware Industries
- Firing ceramic substrates for fuel cells and microelectronics

BENEFITS

Faster heating & cooling cycles (fast firing kiln)

Weight mass reduction

Increased productivity

Reduced CO₂ emissions

Suitable for automated operations

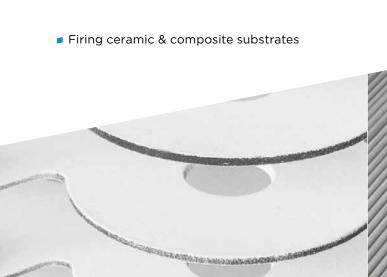
≤ 2MM PRODUCTS

CRYSTAR® • N-DURANCE®

Saint-Gobain's innovative, Lo-Mass® Ultra slab systems are developed for highly flexible kiln furniture rack designs with sizes up to 200 mm x 250 mm and a thickness down to 2 mm.

This enables an optimal combination of product design, geometry and overall efficiency that is needed for

BENEFITS


Energy savings & CO2 reduction

Increased productivity

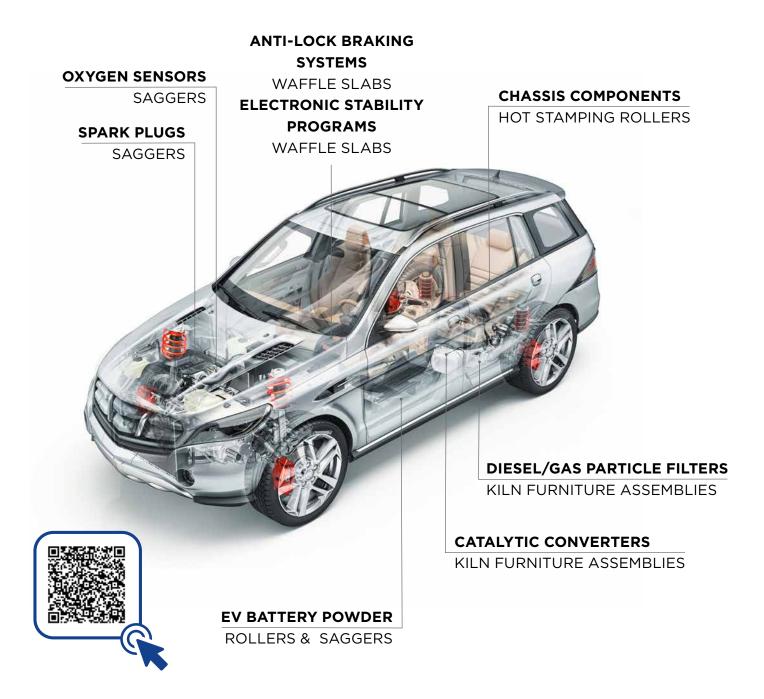
Improved life time (up to 1000 cycles)

AUTOMOTIVE

Our most trusted kiln furniture technology delivers increased productivity in manufacturing and processing various automobile components while reducing energy consumption. Our design services are key to optimizing individual requirements.

FEATURES

Excellent thermal conductivity



Shape stability and strength

Outstanding thermal shock behavior

Defined flatness and surface finish

KILN FURNITURE ASSEMBLIES

Our most trusted material technology delivers increased productivity for DPF & GPF, filters and substrate manufacturing while reducing energy consumption.

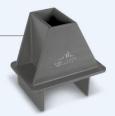
Customers regularly benefit from our design services producing tailored designs for unique applications.

POSTS

Silit® SKD • N-Durance® Crystar®

ROLLERS

Silit® SK • Silit® SKD N-Durance® Crystar® Hexoloy® SE


BEAMS & PROFILE BEAMS

Silit® SK • Silit® SKD • N-Durance® • Crystar® • Hexoloy® SE

SUPPORTS

Alundum® • AnnaCarbid® • Cryston® AnnaSicon® • Silit® SK • Silit® SKD N-Durance® • Crystar® • Hexoloy® SE

PLATES

Alundum $^{\circ}$ • AnnaCarbid $^{\circ}$ • AnnaMullit $^{\circ}$ • AnnaSicon $^{\circ}$ • Cryston $^{\circ}$ Mulnorite $^{\circ}$ • Mullfrax $^{\circ}$ • Silit $^{\circ}$ SK • Silit $^{\circ}$ SKD • N-Durance $^{\circ}$ • Crystar $^{\circ}$ Hexoloy $^{\circ}$ SE

^{*}Lo-Mass* ULTRA plates on page 5

CERAMIC ROLLERS FOR HOT STAMPING APPLICATIONS

DURAFORM®

Our best-in-class ceramic rollers offer distinctive mechanical, thermal, and corrosion resistant characteristics delivering unmatched benefits.

For steel hardening and hot forming processes, our hot stamping rollers are the best solution for your roller hearth kiln challenges. They provide longer life and require less maintenance.

BENEFITS

Significantly extended lifetime

Improved system reliability

Increased resistance to corrosion

Eased removal of contaminants

Ability to be refurbished at end of life*

*available in selected markets

SiC rollers after 12 months –
Superficial contamination with
no penetration into the body

SAINT-GOBAIN PERFORMANCE CERAMICS & REFRACTORIES

REFRACTORY SHAPES

Our innovative materials offer high temperature stability, thermal shock and corrosion resistance along with other application-tailored properties.

REFRACTORY BRICK LININGS

ALUNDUM® • ALFRAX® • AL100 **ANNAMULLIT® • MULLFRAX®** MULNORITE® • RI34 • ZIRNORITE®

Our engineered ceramics provide solutions for the production of technical (fine) ceramics in highly specialized and diverse applications. We help our customers to produce technical ceramics with unique mechanical, electrical, thermal and chemical

properties and property combinations. We offer a large selection of silicon carbide, high

High temperature stability and strength

Excellent thermal shock resistance

Optimum rate of capacity utilization

Chemical compatibility

Superior size capability

HIGH TEMPERATURE APPLICATIONS

THE ALUMINA ADVANTAGE

Saint-Gobain Performance Ceramics & Refractories high-purity ALUNDUM® and ALFRAX® furnace refractory systems provide stable, long-lasting performance in hydrogen atmosphere furnaces and gas-fired periodic kilns. Our high-purity alumina formulations remain stable in the driest high-temperature furnaces, operating between 1,205°C - 1,870°C (2,200°F - 3,400°F).

BENEFITS HIGH PURITY ALUMINA

High strength dense alumina mixes*

Minimize contamination & degradation

Provide longlasting, durable, stable linings

MUFFLES

ALUNDUM® • ALFRAX® • AL100

High purity alumina muffles are used to control firing conditions and to provide a stable, wear resistant support medium for resistance heated atmosphere pusher furnaces at temperatures up to 1,870°C (3,400°F).

- Designed to accommodate pusher plates
- Customized dimensions available

BRICKS

Bricks can be safely used as part of a furnace lining up to 1,760°C (3,168°F).

We also produce insulating and dense zirconia bricks for furnaces that operate up to 2,200°C (4,000°F)

Brick shapes that support heavy loads

Industry standard and specialty shaped brick available

HEARTH PLATES

ALUNDUM® • ALFRAX® 101 • AL100

Hearth plates provide a long lasting, wear resistant push surface at temperatures up to 1,870°C (3,400°F).

- Excellent creep and sag resistance
- For maximum plate life it is important that hearth plates are properly supported

KILN FURNITURE

ADVANCER® • ALUNDUM® • ALFRAX® ANNAMULLIT® CRYSTAR® • HEXOLOY® **ZIRNORITE®**

Engineered ceramics are used in the production of electronic ceramics, including alumina substrates, capacitors, ferrites, titanates, glass, quartz and crystals.

Whether nitride bonded, sintered or recrystallized silicon carbide, engineered ceramics are used in the production of semiconductor components and sputtering targets. Our complete product range extends to alumina/mullite and zirconia kiln furniture.

Engineered Ceramics for electronic ceramics:

- Titanates
- Capacitors
- Glass
- Substrates
- Quartz
- Insulators
- Crystals
- Varistors
- Ferrites

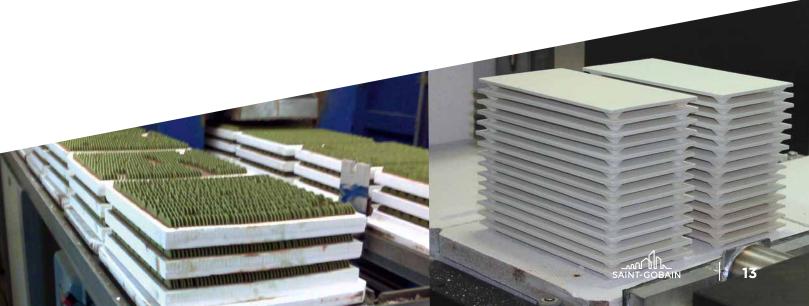
BENEFITS

Chemical compatibility

High stability and strength

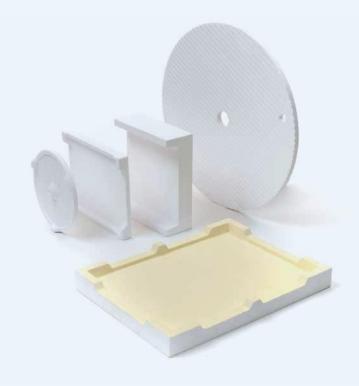
Excellent thermal shock resistance

Outstanding thermal conductivity



High productivity

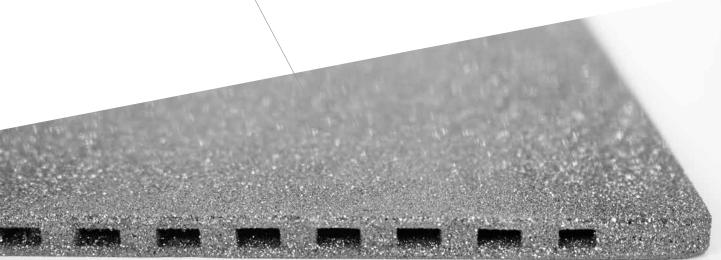
Superior size capability


ELECTRONICS & SEMICONDUCTOR

SETTERS

ALUNDUM® • ALFRAX® • ANNAMULLIT® CRYSTAR® • N-DURANCE®

Our engineered ceramics are used in the production of electronic ceramics, including alumina substrates, capacitors, ferrites, titanates, glass, quartz and crystals.


- Excellent thermal shock resistance
- Shape stability and strength
- Defined flatness and surface finish

WAFFLE SLABS

CRYSTAR®

- Porous material
- Enables stable de-binding
- Maintains high stability and strength

KILN COMPONENTS

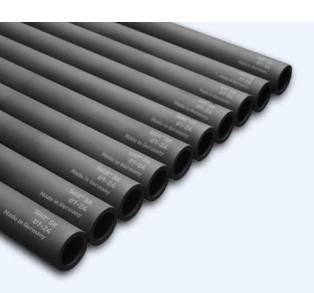
Our ability to manufacture a wide range of silicon carbide, alumina and mullite products caters to a wide spectrum of powder and pigment types and processes.

- Rollers and saggers for processing lithium-ion battery cathode powders
- Kiln furniture and refractory for processing powder metal (PM) and metal injection molded (MIM) parts in atmosphere furnaces
- Various material selections during firing process of different pigments and powder types for the best performance

FEATURES

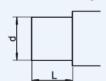
High stability and strength

Excellent thermal conductivity


Extended life time

Very good chemical resistance

Outstanding thermal shock resistance

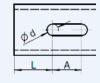


ROLLERS

HEXOLOY® SE • SILIT® SK

- Up to 4000 mm length and 70 mm diameter*
- TIR down to 2.0 mm
- Customized Machining:

Outside turning Inside turning



L

Hole inside

Slotted

LITHIUM-ION BATTERY CATHODE ACTIVE MATERIAL PRODUCTION

SAGGERS

ALUNDUM® • ANNACARBID® • ANNAMULLIT®
ANNASICON® RTH • CRYSTON® • CRYSTAR®
MULLFRAX® • MULNORITE® • N-DURANCE®
SILIT® SKD

- Various materials and shapes available
- High temperature stability
- Defined flatness, shape stability and strength

*Other dimensions on request.

- Outstanding chemical resistance
- Reduced maintenance requirements

MATERIAL CHOICES

Our kiln furniture systems are designed and constructed of advanced silicon carbide (SiC) materials.

Thinner, lighter and significantly stronger than traditional kiln furniture for meeting improved energy efficiencies in high temperature applications - minimize mass while maximizing strength.

We can provide traditional SiC as well as advanced SiC with LO-MASS® kiln furniture benefits.

GREATER
KILN CAPACITY
& REDUCED
FIRING CYCLES

FEATURES & BENEFITS

TRADITIONAL SIC

High shape stability and creep resistance

Very good thermal conductivity

Excellent thermal shock resistance

High oxidation resistance

ADVANCED SIC LO-MASS®

Reduced energy consumption

Optimum rate of capacity utilization

High flexibility

Excellent product quality

Very good thermal shock behavior

PLATES /BATTS

ALUNDUM® • ANNAMULLIT ® • CRYSTON®
CN790 • CARBOFRAX® A • CRYSTAR®
REFRAX® • SILIT® SK • SILIT® SKD
N-DURANCE® • HEXOLOY® SE

Saint-Gobain offers a wide range of sizes for plates or batts. To find the best solution for your system, please speak to our experienced engineers. They understand your needs and will help you make the right product selection for your application.

ENGINEERED CERAMICS

Horizontal tempering of large glass plates for flat screens or glass ceramic cooktops. For roller hearth kilns, high temperature zones are predominantly equipped with silicon carbide rollers.

Co-development of innovative muffles that have steadily increased the size and quality of LCD display glass.

BENEFITS

Excellent thermal conductivity

High strength and shape stability

No deformation over the whole temperature range

Outstanding temperature stability

ZIRCONIA PRODUCTS

ZIRNORITE®

- Calcia and yttria stabilized zirconia brick and shapes
- Dense and insulating
- For extreme high temperature applications

ROLLERS

SILIT® SK • SILIT® SKD • N-DURANCE® CRYSTAR® • HEXOLOY® SE

- Shape stability
- Long lengths, different diameters available
- Tight tolerances in MD and TIR

VALUE PROPOSITION

TAILOR-MADE MATERIALS & SOLUTIONS HIGH PERFORMANCE REFRACTORIES

Saint-Gobain Performance Ceramics & Refractories has been designing and manufacturing high performance ceramics & refractories for over 70 years. Our team of application engineers, material scientists and design engineers understand the conditions in atmosphere furnaces and can help you choose the correct material for your application.

BENEFIT FROM THESE ADVANTAGES:

Custom engineering to customer specifications

Consistently high-quality manufacturing

Extensive worldwide capacity

Robust export compliance

Manufacturing locations on multiple continents

Global R&D resources

OUR SERVICES

INNOVATION

Research & development teams stationed at our cutting-edge R&D centers in Europe, North America, and Asia are using the most advanced and multidisciplinary technologies.

DESIGN & ENGINEERING

Customized solutions including unique ceramic drawings, informed design modification, and modeling capabilities to minimize maintenance and improve productivity.

PARTNERSHIP

in-person assessments, working in partnership with customers to explore the material science and shape capability offered by a world-leading industrial ceramic manufacturer.

CUSTOMER SUPPORT

Experienced, dedicated teams work closely with customers, either in person or remotely via the most advanced digital platforms.

MAKING THE WORLD A BETTER HOME

OUR COMMITMENT

BEING CARBON FREE BY 2050

OUR AMBITION

To provide solutions to our customers that contribute to de-carbonization and reduce environmental footprint.

SUSTAINABILITY AT THE HEART OF OUR BUSINESS STRATEGY

Sustainability is a key tenet of modern environmental, social, and corporate governance (ESG). At Saint-Gobain Performance Ceramics and Refractories, our business model directly contributes to critical ESG outcomes with a dual approach to sustainable development goals: Minimizing our environmental footprint while maximizing our virtuous impact across the entire value chain.

OUR 2030 OBJECTIVES

WATER

- 50% Industrial water withdrawal
- water discharge in area with extremely high water risk

CO2 EMISSIONS

- 33% reduction in scope 1 and scope 2 emissions
 - 16% reduction in scope 3 emissions

CIRCULAR ECONOMY

- 80% non valorized production residue
- + 30% avoidance of virgin raw material

100% recyclable packaging with 30% recycled or bio-sourced content

PRODUCT STEWARDSHIP

100% Life Cycle Analysis for all of Group product ranges

PIONEERING CERAMIC SOLUTIONS FOR EXTREME INDUSTRIAL APPLICATIONS AND A GREENER WORLD.

MATERIAL PROPERTIES

TYPICAL VALUES

ALUMINA BASED

Duranting	11.26	Alundum [®]					
Properties	Unit	AH191A	AH199B	AH291	AH299A	AN599B	
Alumina	%	91.3	99.55	91.3	99.55	99.8	
Silica	%	8.5	0.07	8.5	0.07	0.05	
Max. service temperature ¹⁾	°C	1750	1870	1750	1870	1760	
Bulk density	g/cc	2.9	3.25	2.9	3.2	1.6	
Apparent porosity	Vol. %	20	18	20	19	56	
Modulus of rupture 1250°C	MPa	11.03	17.93	8.96	12.41	0.31	
Modulus of Elasticity RT ²⁾	GPa	34	117	30	135	22	
Thermal Conductivity 1200°C	W/(mK)	2.85	4.3	2.6	2.3	1.45	
Thermal expansion $\alpha_{RT1100^{\circ}C}$	10 ⁻⁶ /K	7	8.4	7	8.4	8.7	

Properties Unit .		Alun	dex®	Alfrax® B201	Annal	Mullit®	Mulnorite [®]	Mullfrax®
roperties	Offic	AX796	AX797	AH723	83 (sagger/plate)	88 (sagger/plate)	KN 176	EM 27
Alumina	%	91.2	91.2	88.4	86/84	82/82	82	90
Silica	%	8.6	8.6	11.5	13/15	17/17	-	-
Max. service temperature ¹⁾	°C	1800	1800	1815	1500	1750	1700	1750
Bulk density	g/cc	2.9	2.9	1.6	2.65/2.8	2.65/2.75	2.7	3
Apparent porosity	Vol. %	19	18	54	22/17	19/16	17	17
Modulus of rupture 1250°C	MPa	16.4	14.7	5.5	11/10 ³⁾	10/10 ³⁾	5 ³⁾	83)
Modulus of Elasticity RT ²⁾	GPa	16	17.8	11	36/27	36/37	34	16
Thermal Conductivity 1200°C	W/(mK)	3.22	3.41	1.36	1.6	1.7	1.6	1.7
Thermal expansion $\alpha_{_{RT1100^{\circ}C}}$	10 ⁻⁶ /K	6.7	6.4	7.3	6.1	5.3	5.3	-

¹⁾ Dependent on the corresponding operation conditions 2) Ambient temperature 3) @1400°C

TYPICAL VALUES

SILICON CARBIDE BASED

Duamantias		l lock	AnnaCarbid®		AnnaSicon®	Carbofrax®	Cryston®	
Properties		Unit	42	65	94	25	CN 764	CN790
SiC-content		%	40	65	84	75	90	81
Max. service temperature		°C	1430	1450	1500	1650	1500	1590
Bulk density	,	kg/dm³	2.5	2.5	2.5	2.63	2.57	2.68
Apparent po	orosity	Vol. %	20	21	17	17	9.8	13
Modulus	RT ²⁾	MPa	20	15	20	40	15.8	46
of rupture	1400°C	MPa	10	15	20	35	24.43)	413)
Thermal exp α _{RT1100°C}	ansion	x10 ⁻⁶ /K	5	5	5	4.5	4.7	5.0

Duanautias	oution Unit		Unit AnnaSicon® Silit®		N Duyanaa®	Crystar [®]		Hexoloy [®]		
Properties		Onit	RTH	SK	SKD	N-Durance®	2000	3000	SA	SE
SiC-content		%	70	85	85	70	> 99	> 97	> 99	>98
Max. service temperature		°C	1450	1380	1380	1450	1600	1600	1750	1750
Bulk density	/	kg/dm³	2.8	3	3	2.75	2.7	2.7	3.15	3.05
Apparent po	orosity	Vol. %	< 1	0	0	≤1	15	15	2	5.1
Modulus	RT ²⁾	MPa	160	260	260	170 - 180	80	80	380	280
of rupture	1400°C	MPa	180	260	260	170 - 190	90	90	370	270
Thermal exp α _{RT1100°C}	oansion	x10 ⁻⁶ /K	4.4	4.5	4.5	4.4	4.8	4.8	4.02	4.02

ZIRCONIA BASED

Properties		Linia	Zirnorite®						
		Unit	ZH192	ZH292A	ZS699	ZS730			
ZrO ₂ -conten	it	%	92.66	92.66	85.55 ⁴⁾	85.554)			
Y ₂ O ₂ -conten	t	%	-	-	14.00	14.00			
CaO-conten	t	%	4.53	4.53	0.10	0.10			
Max. service temperature		°C	2200	1650	2500	2500			
Bulk density	•	kg/dm³	4.43	3.82	4.70	4.73			
Apparent po	orosity	Vol. %	22	32	21	21			
Modulus	RT ²⁾	MPa	12.02	9.80	17.78	27.89			
of rupture	1450°C	MPa	0.57	1.25	12.565)	10.99			
Thermal exp α _{RT1100°C}	ansion	x10 ⁻⁶ /K	9.10	9.10	10.60	10.60			

¹⁾ Dependent on the corresponding operation conditions 2) Ambient temperature 3) @1450°C 4) $ZrO_2 + HfO_2$ -content 5) @1250°C

STANDARD DIMENSIONS FOR BEAMS

Below listed dimensions cover the majority of standard sizes. Larger sizes and tighter tolerances on request.

Feasible dimensions and tolerances of SILIT® SK beams*:

Dimensions		Tolerance X	Wall Thickness s	Max Length	
Height H ± X mm	Width B ± X mm	mm	+1/-0.5 mm	± 2 mm	
20	20	± 1.0	6	2000	
25	25	± 1.0	6	2000	
30	20	± 1.0	6	2000	
30	30	± 1.0	6	2000	
35	35	± 1.0	6	2000	
40	20	± 1.0	6	2000	
40	25	± 1.0	6	2000	
40	30	± 1.0	6	3000	
40	40	± 1.0	6	3500	
50	30	± 1.0	6	3500	
50	40	± 1.0	6,3	3500	
50	50	± 1.0	6,3	3500	
60	40	± 1.2	6,8	3500	
60	50	± 1.2	6,8	3500	
60	60	± 1.2	7,3	3500	
70	40	± 1.4	7,5	3500	
70	50	± 1.4	7,5	3500	
70	60	± 1.4	7,5	3500	
80	40	± 1.4	8	3500	
80	60	± 1.4	8,5	3500	
80	80	± 1.4	9	3500	

Maximum deflection MD and side deflection SD of **SILIT**® **SK** beams:

Length [mm]	MD [mm]	SD [mm]
≤ 2000	≤ 2	≤ 3
≤ 2500	≤ 3	≤ 5
≤ 3000	≤ 5	≤ 8
≤ 3650	≤ 7	≤ 9

Maximum deflection MD of **HEXOLOY® SE** tubes:

Cross Section							
Size (mm)	Tolerances	Size (inch)	Tolerances				
14 x 14	± 0.8	.551" x .551"	± 0.031				
17.78 x 17.78	± 0.8	.70" x .70"	± 0.030				
25.4 x 25.4	± 0.8	1" x 1"	± 0.030				
31.75 x 31.75	± 0.8	1-1/4" x 1-1/4"	± 0.030				
38.1 x 38.1	± 0.8	1-1/2" x 1-1/2"	± 0.030				
50.8 x 50.8	± 2.5	2" x 2"	± 0.100				

Feasible dimensions and tolerances of **N-Durance**® **beams***:

Dime	nsions	Wall Thickness s	Max Length ±	
Height H ± 1.5 mm	Width B ± 1.5 mm	+3/-0.5 mm	2 mm	
20	20	4	1300	
30-40	20-30	5	2000	
40-80	40-50	6	3200	
80-110	50-80	7	3200	

Maximum deflection in relation to the length is 2‰.

Feasible dimensions and tolerances of **CRYSTAR® beams***:

Dimer	nsions	Wall Thickness s	Max Length ±	
Height H ± 1.5 mm	Width B ± 1.5 mm	+3/-0.5 mm	2 mm	
20	20	4	2000	
20-40	20-30	5	2000	
40-80	30-50	6	2000	
80-110	40-60	8	3000	
110-270	40-80	10 +5/-0.5	3000	

Maximum deflection in relation to the length is 2‰.

STANDARD DIMENSIONS FOR TUBES & ROLLERS

Below listed dimensions cover the majority of standard sizes. Larger sizes and tighter tolerances on request.

Feasible dimensions and tolerances of **SILIT* SK** tubes & rollers*

	Diameter							
Outside	e D [mm] Inside d [mm]		Inside d [mm]					
20	± 0.3	11	+0.35/-1.55	2500				
20	± 0.3	13	+0.35/-1.55	2500				
25	± 0.3	15	+0.4/-1.6	2500				
25	± 0.3	18	+0.4/-1.6	2500				
30	± 0.4	21	+0.45/-1.65	3000				
31.7	± 0.4	22.5	+0.5/-1.7	3000				
34	± 0.4	24	+0.5/-1.7	3500				
35.5	± 0.5	25	+0.5/-1.7	3500				
38.1	± 0.5	27.8	+0.55/-1.75	3500				
40	± 0.5	30	+0.55/-1.75	3500				
42	± 0.5	32	+0.55/-1.75	3500				
45	± 0.6	34	+0.7/-1.8	3500				
50.8	± 0.6	38.1	+0.65/-1.85	3500				
55	± 0.9	43	+0.7/-1.9	3500				
60	± 1.0	47	+0.8/-2	3500				
63.5	± 1.2	50.8	+0.9/-2.1	3500				
65	± 1.2	52	+0.9/-2.1	3500				
70	± 1.2	56	+1/-2.2	3000				
76	± 1.4	60	+1/-2.2	3000				
80	± 1.4	65	+1.2/-2.4	3000				
90	± 1.6	76	+1.4/-2.6	3000				

Feasible dimensions and tolerances of **N-Durance*** tubes & rollers*:

	Outer Diameter [mm]	Wall Thickness [mm]	Max Length [mm]
	-20	4	1000
	21-30	5	2500
	31-40	5	2800
	41-50	5	3000
	51-100	6	3000
Tolerance	-2	-6	±2

Maximum deflection MD of **N-Durance**® tubes & rollers:

Length [mm]	MD [mm]
≤ 2000	≤ 5
2001-3000	≤ 7

*Technical data, right of modification reserved.

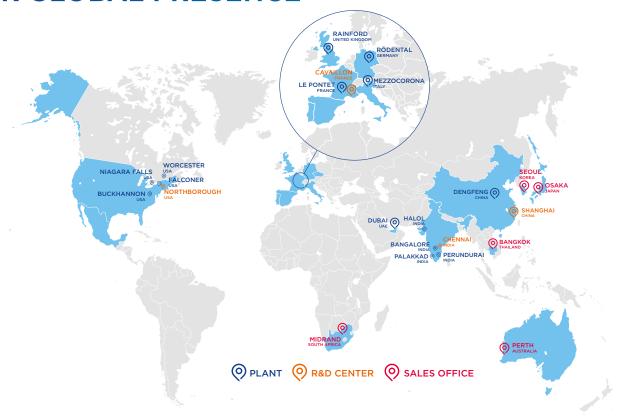
Maximum deflection MD of **SILIT® SK** tubes & rollers:

Length [mm]	MD [mm]
≤ 2000	≤ 5
≤ 3500	≤ 7
> 3500	≤ 3 ‰

Maximum deflection MD and side deflection SD of **HEXOLOY* SE** beams:

Custom Lengths-L (+/- 1/8")	OD	ID	Tolerances
6"- 27" >27"- 54"	3/8"	1/4"	± 0.015
	1/2"	.380"	± 0.063
	14mm	11mm	± 1.6mm
	5/8"	3/8"	± 0.025
	3/4"	.570	± 0.063
	3/4"	1/2"	± 0.025
	1"	1/2"	± 0.03
	1-1/4"	3/4"	± 0.04
	1-1/4"	0.922	± 0.04
	1-1/2"	1"	± 0.04

Feasible dimensions and tolerances of **CRYSTAR*** tubes & rollers*:


	Outer Diameter [mm]	Wall Thickness [mm]	Max Length [mm]
	-20	4	1000
	21-30	5	2500
	31-40	5	2800
	41-50	5	3000
	51-60	6	3000
	61-70	6	3000
	71-80	6	3000
	81-90	6	3000
	91-100	6	3000
Tolerance	+1/-0,5	+3/-0,5	±2

Maximum deflection MD of CRYSTAR® tubes & rollers:

Length [mm]	MD [mm]
≤ 2000	≤ 5
2001-3000	≤ 7

SAINT-GOBAIN PERFORMANCE CERAMICS & REFRACTORIES

OUR GLOBAL PRESENCE

CONTACT US

USA

Niagara Falls

+1 716 278 6233

Worcester

+1 508 795 5264

Falconer

+1 716 483 7222

MIDDLE EAST & AFRICA

Dubai (UAE)

+971 4 8011800

For more information:

www.ceramicsrefractories.saint-gobain.com ceramics.refractories@saint-gobain.com

Follow us on in

EUROPE

Rainford (United Kindom)

+44 1744 882 941

Rödental (Germany)

+49 9563 724 201

INDIA

Bangalore

+ 91 7228 950 887

Halol

+ 91 7228 950 886

PACIFIC

Perth (Australia)

+61 394 745 940

JAPAN

Osaka

+81 6 4707 1700

CHINA

Dengfeng

+86 4008880198

Shanghai

+86 4008880198

ASIA

Seoul (Korea)

+82 2370 693 34

Bangkok (Thailand)

+66 61 415 9204

The information contained in this document is believed to be accurate and reliable but is provided without guarantee or warranty on the part of Saint-Gobain Performance Ceramics & Refractories. Process parameters and requirements can impact typical values and test methods. Further, nothing present herein should be interpreted as an authorization or inducement to practice any patented invention without an appropriate license. Saint-Gobain Performance Ceramics & Refractories Terms and Conditions apply to all purchases.

Copyright © 2024, Saint-Gobain Performance Ceramics & Refractories. All rights reserved.

