CRYSTAR® CROSSFLOW MEMBRANES For liquid filtration

MAIN FEATURES

Crystar[®] **Filtration Technology** are advanced ceramic membranes made of high purity recrystallized silicon carbide (RSiC). They are characterized by:

 a multilayer RSiC membrane with an engineered microstructure to ensure a *reliable and efficient separation process* with an excellent balance between *retention efficiency and permeate flux*.

a RSiC carrier material with the *highest permeability* in the market, which enables high *permeate transfer* and *very effective backwash* or back flush operations.

The inherent properties of silicon carbide are perfect for the broadest range of filtration applications: excellent thermal stability, superior thermal shock resistance for fast and efficient chemical cleaning (CIP - clean in place) and high chemical stability under the harshest environments.

PRODUCTS

Membranes pore sizes (as measured by mercury intrusion 1)					
250 nm	600 nm	1000 nm	3000 nm		
Customized pore sizes in the range 250 - 3000 nm may be produced upon request. Contact Us!					
Outer diameter (mm)	Channels diameter (mm)	Filtration area (m ² /m)	Length (mm)		
10	6	0.018	up to 400		
25	17	0.053	up to 1178		
25	3	0.30	up to 1178		
25	2	0.42	up to 1178		
41	3	0.66	up to 1200		
41	5	0.53	up to 1200		

Stainless steel and PVC housings with O-ring sealing and different capacities are available for a straightforward use of Crystar^{*} FT.

¹Mercury intrusion is the preferred method to measure the physical pore size of porous materials.

CRYSTAR® CROSSFLOW MEMBRANES for liquid filtration

BENEFITS OF CRYSTAR® FT VS. OTHER MEMBRANE MATERIALS

Characteristics	Polymeric	Al ₂ O ₃	TiO₂	Crystar ®
Thermal shock resistance	++	+	+	+++
Permeability	-	+	++	+++
Resistance to fouling	-	+	+	++
Chemical resistance	-	++	++	+++
Temperature stability	-	++	++	+++
Lifetime	+	++	++	+++
Weight	+++	-	-	++

APPLICATIONS

Clarification of beverages	Concentration of natural pigments
Bacteria and particulate removal from primary water or industrial and urban wastewater	Oil separation from produced water or oily wastewater
Concentration of inorganic powders	Pre-filtration prior to reverse osmosis

RETENTION EFFICIENCY MEASUREMENTS FOR MICROORGANISMS

Crystar[®] FT600 (0.6 µm RSiC membrane)

- Escherichia Coli (size 0.5 μm x 1.5 μm): LRV = 4.2 (99.992% efficiency)
- Brevundimonas diminuta (size 0.2 μm x 0.5 μm): LRV = 3.7 (99.97% efficiency)

Crystar® FT3000 (3.0 µm RSiC membrane)

- Cryptosporidium Parvum (4.5 μm): LRV > 4.4 (>99.996% efficiency)
- Legionella Adelaidensis (size 0.5 x 2.0 μm): LRV > 2 (>99% efficiency)
- Pseudomonas Aeruginosa (size 0.5 x 2.0 μm): LRV > 2 (>99% efficiency)

For more information: www.ceramicsrefractories.saint-gobain.com ceramics.refractories@saint-gobain.com

Follow us on in

The information contained in this document is believed to be accurate and reliable but is provided without guarantee or warranty on the part of Saint-Gobain Performance Ceramics & Refractories. Process parameters and requirements can impact typical values and test methods. Further, nothing present herein should be interpreted as an authorization or inducement to practice any patented invention without an appropriate license. Saint-Gobain Performance Ceramics & Refractories Terms and Conditions apply to all purchases.

Copyright © 2024, Saint-Gobain Performance Ceramics & Refractories. All rights reserved.

