

SAINT-GOBAIN PERFORMANCE CERAMICS & REFRACTORIES

CERAMIC SYSTEMS FOR KILNS & FURNACES

SAINT-GOBAIN

1 in 4 products did not exist 5 years ago

170.000+ employees

2022 sales of **€ 51.2** billion

represented in

76 countries

-27%carbon emissions
reduction (\$2.002.00 \$2000.00)

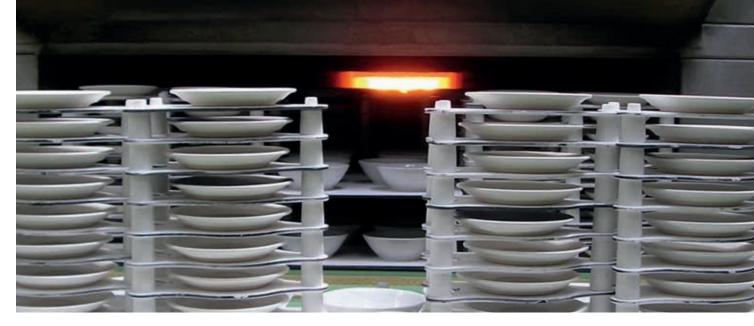
main R&D centres

OUR MISSION

Saint-Gobain designs, manufactures and distributes materials and solutions which are key ingredients in the well-being of each of us and the future of all.

OUR PURPOSE

MAKING THE WORLD A BETTER HOME.


SAINT-GOBAIN

PERFORMANCE CERAMICS & REFRACTORIES

OUR MISSION

To design, develop and supply solutions and services for extreme operating industrial conditions. Our engineered ceramics and refractory products are manufactured to the highest industrial standards and deliver enhanced performance while minimizing environmental impact.

PIONEERING CERAMIC SOLUTIONS FOR EXTREME INDUSTRIAL APPLICATIONS AND A GREENER WORLD.

Ceramic Systems

The products and solutions for kilns & furnaces under Saint-Gobain Ceramic Systems are designed and developed for many applications to have consistent and long-term performance.

Our products are designed to withstand high temperatures (up to 2500°C) and severe operating conditions.

Developed and manufactured to suit kilns & furnaces that are typically used in various industry segments.

KEY MARKETS & APPLICATIONS

WHITEWARE

SANITARY & DINNERWARE INDUSTRIES

AUTOMOTIVE

HOT STAMPING, PARTICLE FILTERS, SPARK PLUGS, OXYGEN SENSORS

TECHNICAL CERAMICS

ELECTRONICS & SEMICONDUCTOR

BATTERY / LI-ION

CHEMICAL

POWDER / PHARMACEUTICALS

ABRASIVES & GRINDING MEDIA

SANITARY & DINNERWARE

Our kiln furniture systems are designed and constructed of advanced silicon carbide (SiC) materials. Thinner, lighter and significantly stronger than traditional kiln furniture for meeting improved energy efficiencies in high temperature applications.

- Constructed of advanced silicon carbide
- Improved energy efficiencies
- Minimize mass
- Maximize strength
- Greater kiln capacity
- Reduced firing cycles

FEATURES

Reduced energy consumption

Optimum rate of capacity utilization

High flexibility

Excellent product quality

Very good thermal shock behavior

LO-MASS® SYSTEMS

Up to

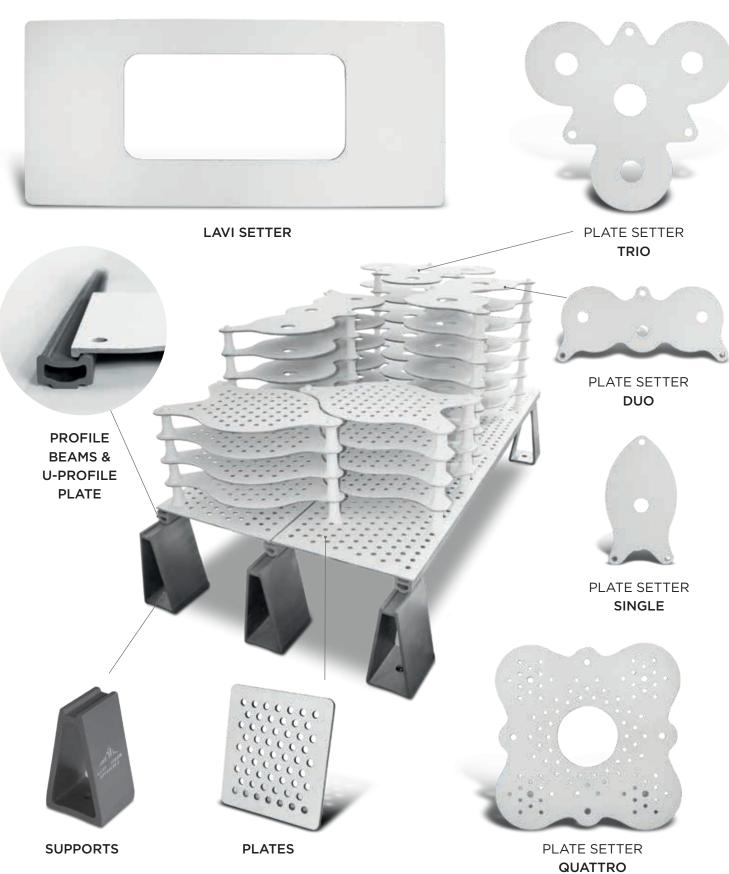
33%
higher efficiency

Crystar® • Hexoloy® SA • Hexoloy® SE • N-Durance® • Silit® SK • Silit® SKD

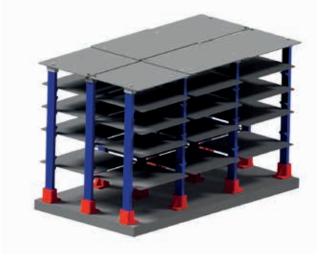
LO-MASS® components are customizable and flexible for whiteware and porcelain tableware firing systems.

Expertise in product design and customization for every type of kiln.

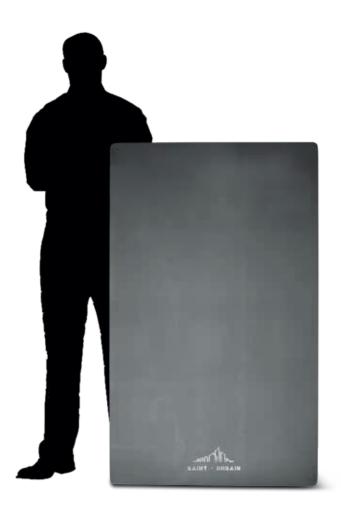
- Energy efficiencies in high temperature applications
- Minimize mass while maximizing strength
- Increased automation compatibility for loading and unloading


For more information

THINNER, LIGHTER, STRONGER



In order to meet the constantly growing challenges of our customers, our innovative XXL plate size guarantees more products and less kiln furniture for your system. We offer this solution in the following key markets:



SYSTEM WITH STANDARD PLATES

- Whiteware
- Automotive
- Technical Ceramics
- Abrasives & Grinding Media

SYSTEM WITH XXL PLATES

(XXL) PLATES

N-Durance®

Many different sizes possible

Saint-Gobain offers individual designs that are available up to approximately 1250 \times 900 \times 10 mm (49 \times 35 \times .974"). They are approximately two times larger than other advanced silicon carbide plates currently offered on the market.

BENEFITS

Increased setting space

Further reduction of structural supports and kiln furniture

Eliminate joints/seams underneath product

Flatness retention over large setting area

LO-MASS® ULTRA

up to 40%

Crystar® • N-Durance®

4 mm thick slabs and plate setters are available in a variety of shapes. They are manufactured with our industry proven N-Durance® and Crystar® advanced silicon carbide materials used in

- Porcelain, Dinnerware & Sanitaryware Industries
- Firing ceramic substrates for e.g. fuel cells

BENEFITS

Faster heating & cooling cycles (fast firing kiln)

Weight mass reduction

Increased productivity

Reduced CO₂ emissions

✓ Suitable for automated✓ operations

≤ 2MM PRODUCTS

Crystar® • N-Durance®

Saint-Gobain's innovative, Lo-Mass® Ultra slab systems are developed for highly flexible kiln furniture rack designs with sizes up to 200 mm x 250 mm and a thickness down to 2 mm.

This enables an optimal combination of product design, geometry and overall efficiency that is needed for

• Firing ceramic & composite substrates

BENEFITS

Energy savings & CO₂ reduction

Increased productivity

Improved life time (up to 1000 cycles)

AUTOMOTIVE

Our most trusted kiln furniture technology delivers increased productivity in manufacturing and processing various automobile components while reducing energy consumption. Our design services are key to optimizing individual requirements.

FEATURES

Excellent thermal conductivity

Shape stability and strength

Outstanding thermal shock behavior

Defined flatness and surface finish

For more information

KILN FURNITURE **ASSEMBLIES**

Our most trusted material technology delivers increased productivity for DPF & GPF, filters and substrate manufacturing while reducing energy consumption.

Customers have always benefited from our design services as it is optimized to individual requirement.

ROLLERS

BEAMS & PROFILE BEAMS

Silit® SK • Silit® SKD N-Durance® • Crystar Hexoloy® SE

SUPPORTS

Alundum® • AnnaCarbid® • Cryston® AnnaSicon® • Silit® SK • Silit® SKD N-Durance® • Crystar® • Hexoloy® SE

PLATES

Alundum® • AnnaCarbid® • AnnaMullit® • AnnaSicon® • Cryston® Mulnorite® • Mullfrax® • Silit® SK • Silit® SKD • N-Durance® • Crystar® Hexoloy® SE

^{*}Lo-Mass® ULTRA plates on page 5

FOR HOT STAMPING **APPLICATIONS**

DuraFORM®

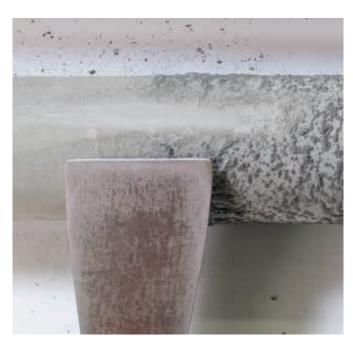
Our ceramic rollers offer distinctive mechanical, thermal and corrosion resistant characteristics, which makes them best in class and delivers unmatched benefits.

For steel hardening and hot forming processes, our hot stamping rollers are the best solution for your roller hearth kiln challenges. They provide longer life and require less maintenance.

BENEFITS

Significant longer life time

No breakage


No diffusion into the roller material

Easy removable contaminations

Reduced maintenance needs

SiC rollers after 12 months - Superficial contamination with no penetration into the body

REFRACTORY SHAPES

Our innovative materials offer high temperature stability, thermal shock and corrosion resistance along with other application tailored properties.

REFRACTORY BRICK LININGS

Alundum® • Alfrax® • AL100 • AnnaMullit® • Mullfrax® Mulnorite® • RI34 • Zirnorite®

High alumina, mullite and zirconia brick linings for high temperature kilns and atmosphere furnaces ensure optimal thermal processing.

We offer a large selection of silicon carbide, high purity alumina, high alumina-mullite, mullite, zirconia refractory and kiln furniture products.

BENEFITS

High temperature stability and strength

Excellent thermal shock resistance

Optimum rate of capacity utilization

Chemical compatibility

Superior size capability

HIGH TEMPERATURE APPLICATIONS

THE ALUMINA ADVANTAGE

Complex
shape capacity
reduces costs
& set-up
time

Saint-Gobain Performance Ceramics & Refractories high-purity ALUNDUM® and ALFRAX® furnace refractory systems provide stable, long-lasting performance in hydrogen atmosphere furnaces and gas-fired periodic kilns.

Our high-purity alumina formulations remain stable in the driest high-temperature furnaces, operating between 1205°C - 1870°C (2200°F - 3400°F).

HIGH PURITY ALUMINA

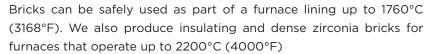
BENEFITS

High strength dense alumina mixes*

Minimize contamination & degradation

Provide longlasting, durable, stable linings

MUFFLES


Alundum® • Alfrax® • AL100

High purity alumina muffles are used to control firing conditions and to provide a stable, wear resistant support medium for resistance heated atmosphere pusher furnaces at temperatures up to 1870°C (3400°F).

- Designed to accommodate pusher plates
- Customized dimensions available

BRICKS

Alundum[®] • Alfrax[®] 101 • AL100 • RI34

- Brick shapes that support heavy loads
- Industry standard and specialty shaped brick available

HEARTH PLATES

Alundum® • Alfrax® 101 • AL100

Hearth plates provide a long lasting, wear resistant push surface at temperatures up to 1870°C (3400°F).

- Excellent creep and sag resistance
- For maximum plate life it is important that hearth plates are properly supported

ELECTRONICS & SEMICONDUCTOR

KILN FURNITURE

Advancer® • Alundum® • Alfrax® • AnnaMullit® Crystar® • Hexoloy® • Zirnorite®

Engineered ceramics are used in the production of electronic ceramics, including alumina substrates, capacitors, ferrites, titanates, glass, quartz and crystals.

Wether nitride bonded, sintered or recrystallized silicon carbide, it is used in the production of semiconductor components and sputtering targets. Our complete product range extends to alumina/mullite and zirconia kiln furniture.

Engineered Ceramics for electronic ceramics:

- Titanates
- Glass
- Quartz
- Crystals
- Ferrites
- Capacitors
- Substrates
- Insulators
- Varistors

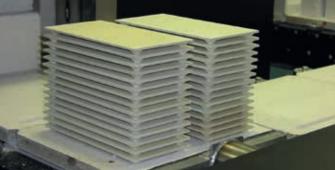
BENEFITS

✓ Chemical compatibility

High stability and strength

L% Excellent thermal shock resistance

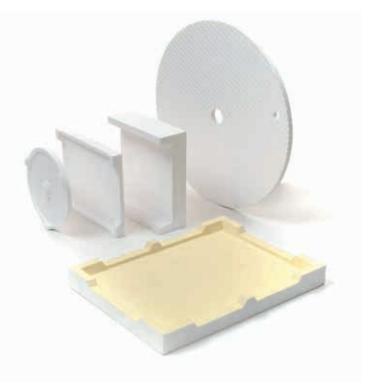
Outstanding thermal conductivity



High productivity

Superior size capability

ELECTRONICS & SEMICONDUCTOR

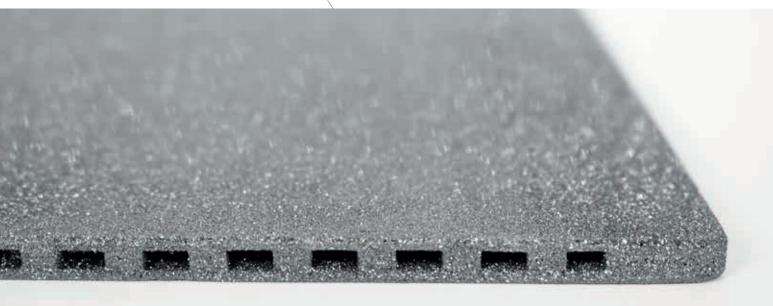


SETTERS

Alundum® • Alfrax® • AnnaMullit® • Crystar® N-Durance®

Our engineered ceramics are used in the production of electronic ceramics, including alumina substrates, capacitors, ferrites, titanates, glass, quartz and crystals.

- Excellent thermal shock resistance
- Shape stability and strength
- Defined flatness and surface finish



WAFFLE SLABS

Crystar®

- Porous material
- Enables stable de-binding
- Maintains high stability and strength

PIGMENTS & POWDERS

Our ability to manufacture a wide range of silicon carbide, alumina and mullite products caters to a wide spectrum of powder and pigment types and processes.

- ROLLERS and SAGGERS for processing lithium-ion battery cathode powders
- KILN FURNITURE and REFRACTORY for processing powder metal (PM) and metal injection molded (MIM) parts in atmosphere furnaces
- · Various material selections during firing process of different pigments and powder types for the best performance

FEATURES

High stability and strength

Excellent thermal conductivity

Extended life time

Very good chemical resistance

0utstanding thermal shock resistance

FIRING, SINTERING, HEAT TREATING

ROLLERS

Hexoloy® SE • Silit® SK

- Up to 4000 mm length and 70 mm diameter*
- · Outstanding chemical resistance
- Reduced maintenance requirements

SAGGERS

Alundum® • AnnaCarbid® • AnnaMullit® • AnnaSicon® RTH Cryston® • Crystar® • Mullfrax® • Mulnorite® • N-Durance® Silit® SKD

- Various materials and shapes available
- · High temperature stability
- · Defined flatness, shape stability and strength

^{*}Other dimensions on request.

MATERIAL CHOICES

Greater kiln capacity & reduced firing cycles

Our kiln furniture systems are designed and constructed of advanced silicon carbide (SiC) materials.

Thinner, lighter and significantly stronger than traditional kiln furniture for meeting improved energy efficiencies in high temperature applications - minimize mass while maximizing strength.

We can provide traditional SiC as well as advanced SiC with LO-MASS® kiln furniture benefits.

FEATURES & BENEFITS

TRADITIONAL SIC

High shape stability and creep resistance

 $\frac{-\infty}{2}$ Very good thermal conductivity

Excellent thermal shock resistance

High oxidation resistance

PLATES /BATTS

Alundum® • AnnaMullit ® • Cryston® CN790 Carbofrax® A • Crystar® • Refrax® • Silit® SK Silit® SKD • N-Durance® • Hexoloy® SE

Saint-Gobain offers a wide range of sizes for plates or batts. To find the best solution for your system, please speak to our experienced engineers. They understand your needs and will help you make the right product selection for your application.

ADVANCED SIC LO-MASS®

Reduced energy consumption

Optimum rate of capacity utilization

High flexibility

Excellent product quality

∠ Wery good thermal shock behavior

ENGINEERED CERAMICS

Horizontal tempering of large glass plates for flat screens or glass ceramic cooktops. For roller hearth kilns, high temperature zones are predominantly equipped with silicon carbide rollers.

Co-development of innovative muffles that have steadily increased the size and quality of LCD display glass.

BENEFITS

L% Excellent thermal conductivity

High strength and shape stability

No deformation over the whole temperature range

Outstanding temperature stability

ZIRCONIA PRODUCTS

Zirnorite®

- Calcia and yttria stabilized zirconia brick and shapes
- Dense and insulating
- For extreme high temperature applications

ROLLERS

Silit® SK • Silit® SKD • N-Durance® • Crystar® Hexoloy® SE

- Shape stability
- Long lengths, different diameters available
- Tight tolerances in MD and TIR

PERFORMANCE CERAMICS & REFRACTORIES

Saint-Gobain Performance Ceramics & Refractories has been designing and manufacturing high performance ceramics & refractories for over 70 years. Our team of application engineers, material scientists and design engineers understand the conditions in atmosphere furnaces and can help you choose the correct material for your application.

Benefit from these advantages:

- Custom engineering to customer specifications
- Consistently high-quality manufacturing
- Extensive worldwide capacity
- Robust export compliance

- Manufacturing locations on multiple continents
- Global R&D resources

Tailor-made materials & solutions

OUR SERVICES

DESIGN & ENGINEERING

Customized solutions including ceramic & refractory drawings, adjusted design and modeling capabilities to help minimize maintenance/relining frequency.

INNOVATION

Research & development team stationed at our leading-edge R&D centers in Europe, North America and Asia; specialize in ceramic & refractory technology and constantly interact with customers & industry experts while using the most progressive and multidisciplinary technologies.

PARTNERSHIP

Experienced application teams offer assessments, working in partnership with customers to explore material science and shape capability available from a world leading ceramic & refractory manufacturer.

CUSTOMER SUPPORT

Experienced, dedicated teams work closely with customers, either in person or remotely via the most advanced digital platforms.

MAKING THE WORLD A BETTER HOME

OUR COMMITMENT

Being carbon free by 2050

OUR AMBITION

To provide solutions to our customers that contribute to de-carbonization and reduce environmental footprint.

SUSTAINABILITY AT THE HEART OF OUR BUSINESS STRATEGY

Sustainability is a key tenet of modern environmental, social, and corporate governance (ESG).

At Saint-Gobain Performance Ceramics and Refractories, our business model directly contributes to critical ESG outcomes with a dual approach to sustainable development goals: Minimizing our environmental footprint while maximizing our virtuous impact across the entire value chain.

TYPICAL VALUES

Alumina based

Durantina	I I in	Alundum®					
Properties	Unit	AH191A	AH199B	AH291	AH299A	AN599B	
Alumina	%	91.3	99.55	91.3	99.55	99.8	
Silica	%	8.5	0.07	8.5	0.07	0.05	
Max. service temperature ¹⁾	°C	1750	1870	1750	1870	1760	
Bulk density	g/cc	2.9	3.25	2.9	3.2	1.6	
Apparent porosity	Vol. %	20	18	20	19	56	
Modulus of rupture 1250°C	MPa	11.03	17.93	8.96	12.41	0.31	
Modulus of Elasticity RT ²⁾	GPa	34	117	30	135	22	
Thermal Conductivity 1200°C	W/(mK)	2.85	4.3	2.6	2.3	1.45	
Thermal expansion $\alpha_{\text{RT1100°C}}$	10 ⁻⁶ /K	7	8.4	7	8.4	8.7	

Properties	Unit	Alun	dex®	Alfrax® B201	Annal	AnnaMullit®		Mullfrax®
rioperties	Offic	AX796	AX797	AH723	83 (sagger/plate)	88 (sagger/plate)	KN 176	EM 27
Alumina	%	91.2	91.2	88.4	86/84	82/82	82	90
Silica	%	8.6	8.6	11.5	13/15	17/17	-	-
Max. service temperature ¹⁾	°C	1800	1800	1815	1500	1750	1700	1750
Bulk density	g/cc	2.9	2.9	1.6	2.65/2.8	2.65/2.75	2.7	3
Apparent porosity	Vol. %	19	18	54	22/17	19/16	17	17
Modulus of rupture 1250°C	MPa	16.4	14.7	5.5	11/10³)	10/10 ³⁾	5 ³⁾	8 ³⁾
Modulus of Elasticity RT ²⁾	GPa	16	17.8	11	36/27	36/37	34	16
Thermal Conductivity 1200°C	W/(mK)	3.22	3.41	1.36	1.6	1.7	1.6	1.7
Thermal expansion $\alpha_{\text{RT1100°C}}$	10 ⁻⁶ /K	6.7	6.4	7.3	6.1	5.3	5.3	-

¹⁾ Dependent on the corresponding operation conditions $\,$ 2) Ambient temperature $\,$ 3) @1400°C

TYPICAL VALUES

Silicon Carbide based

Durantina			AnnaCarbid®			AnnaSicon®	Carbofrax®	Cryston®
Properties		Unit	42	65	94	25	CN 764	CN790
SiC-content		%	40	65	84	75	90	81
Max. service temperature		°C	1430	1450	1500	1650	1500	1590
Bulk density		kg/dm³	2.5	2.5	2.5	2.63	2.57	2.68
Apparent po	orosity	Vol. %	20	21	17	17	9.8	13
Modulus	RT ²⁾	GPa	20	15	20	40	15.8	46
of rupture	1400°C	GPa	10	15	20	35	24.43)	413)
Thermal exp α _{RT1100°C}	ansion	x10 ⁻⁶ /K	5	5	5	4.5	4.7	5.0

Duamenties		Unit	AnnaSicon®	naSicon® Silit®		N-Durance®	Crys	tar®	Hexc	oloy®
Properties		Offic	RTH	SK	SKD	N-Durance	2000	3000	SA	SE
SiC-content		%	70	85	85	70	> 99	> 97	> 99	>98
Max. service temperature		°C	1450	1380	1380	1450	1600	1600	1750	1750
Bulk density	/	kg/dm³	2.8	3	3	2.75	2.7	2.7	3.07	3.05
Apparent po	orosity	Vol. %	< 1	0	0	≤1	15	15	< 0.6	5.1
Modulus	RT ²⁾	GPa	160	260	260	170 - 180	80	80	380	280
of rupture	1400°C	GPa	180	260	260	170 - 190	90	90	370	270
Thermal exp α _{RT1100°C}	oansion	x10 ⁻⁶ /K	4.4	4.5	4.5	4.4	4.8	4.8	4.02	4.02

Zirconia based

		l lock		orite®		
Properties		Unit	ZH192	ZH292A	ZS699	ZS730
ZrO ₂ -conter	nt	%	92.66	92.66	85.55 ⁴⁾	85.55 ⁴⁾
Y ₂ O ₂ -conter	nt	%	-	-	14.00	14.00
CaO-conten	t	%	4.53	4.53	0.10	0.10
Max. service temperature		°C	2200	1650	2500	2500
Bulk density	′	kg/dm³	4.43	3.82	4.70	4.73
Apparent po	orosity	Vol. %	22	32	21	21
Modulus	RT ²⁾	GPa	12.02	9.80	17.78	27.89
of rupture	1450°C	GPa	0.57	1.25	12.56 ⁵⁾	10.99
Thermal exp α _{RT1100°C}	oansion	x10 ⁻⁶ /K	9.10	9.10	10.60	10.60

¹⁾ Dependent on the corresponding operation conditions 2) Ambient temperature 3) $@1450^{\circ}C$ 4) $ZrO_2 + HfO_2$ -content 5) $@1250^{\circ}C$

STANDARD DIMENSIONS FOR BEAMS

Below listed dimensions cover the majority of standard sizes. Larger sizes and tighter tolerances on request.

Feasible dimensions and tolerances of SILIT® SK beams*:

Dimensions		Tolerance X	Wall Thickness s	Max Length	
Height H ± X mm	Width B ± X mm	mm	+1/-0.5 mm	± 2 mm	
20	20	± 1.0	6	2000	
25	25	± 1.0	6	2000	
30	20	± 1.0	6	2000	
30	30	± 1.0	6	2000	
35	35	± 1.0	6	2000	
40	20	± 1.0	6	2000	
40	25	± 1.0	6	2000	
40	30	± 1.0	6	3000	
40	40	± 1.0	6	3500	
50	30	± 1.0	6	3500	
50	40	± 1.0	6,3	3500	
50	50	± 1.0	6,3	3500	
60	40	± 1.2	6,8	3500	
60	50	± 1.2	6,8	3500	
60	60	± 1.2	7,3	3500	
70	40	± 1.4	7,5	3500	
70	50	± 1.4	7,5	3500	
70	60	± 1.4	7,5	3500	
80	40	± 1.4	8	3500	
80	60	± 1.4	8,5	3500	
80	80	± 1.4	9	3500	

Maximum deflection MD and side deflection SD of SILIT® SK beams:

Length [mm]	MD [mm]	SD [mm]
≤ 2000	≤ 2	≤ 3
≤ 2500	≤ 3	≤ 5
≤ 3000	≤ 5	≤ 8
≤ 3650	≤ 7	≤ 9

Feasible dimensions and tolerances of **N-Durance**® beams*:

Dime	nsions	Wall Thickness s	Max Length ±	
Height H ± 1.5 mm	Width B ± 1.5 mm	+3/-0.5 mm	2 mm	
20	20	4	1300	
30-40	20-30	5	2000	
40-80	40-50	6	3200	
80-110	50-80	7	3200	

Maximum deflection in relation to the length is 2%.

Feasible dimensions and tolerances of CRYSTAR® beams*:

Dimensions		Wall Thickness s	Max Length ±	
Height H ± 1.5 mm	Width B ± 1.5 mm	+3/-0.5 mm	2 mm	
20	20	4	2000	
20-40	20-30	5	2000	
40-80	30-50	6	2000	
80-110	40-60	8	3000	
110-270	40-80	10 +5/-0.5	3000	

Maximum deflection in relation to the length is 2‰.

 $^{^{*}}$ Technical data, right of modification reserved.

STANDARD DIMENSIONS FOR TUBES & ROLLERS

Below listed dimensions cover the majority of standard sizes. Larger sizes and tighter tolerances on request.

Feasible dimensions and tolerances of SILIT® SK tubes & rollers*

reasible differisions and tolerances of Silit 'Sk tubes & follers								
	Max Length							
Outside	D [mm]	Insid	e d [mm]	± 2 mm				
20	± 0.3	11	+0.35/-1.55	2500				
20	± 0.3	13	+0.35/-1.55	2500				
25	± 0.3	15	+0.4/-1.6	2500				
25	± 0.3	18	+0.4/-1.6	2500				
30	± 0.4	21	+0.45/-1.65	3000				
31.7	± 0.4	22.5	+0.5/-1.7	3000				
34	± 0.4	24	+0.5/-1.7	3500				
35.5	± 0.5	25	+0.5/-1.7	3500				
38.1	± 0.5	27.8	+0.55/-1.75	3500				
40	± 0.5	30	+0.55/-1.75	3500				
42	± 0.5	32	+0.55/-1.75	3500				
45	± 0.6	34	+0.7/-1.8	3500				
50.8	± 0.6	38.1	+0.65/-1.85	3500				
55	± 0.9	43	+0.7/-1.9	3500				
60	± 1.0	47	+0.8/-2	3500				
63.5	± 1.2	50.8	+0.9/-2.1	3500				
65	± 1.2	52	+0.9/-2.1	3500				
70	± 1.2	56	+1/-2.2	3000				
76	± 1.4	60	+1/-2.2	3000				
80	± 1.4	65	+1.2/-2.4	3000				
90	± 1.6	76	+1.4/-2.6	3000				

Maximum deflection MD of SILIT® SK tubes & rollers:

Length [mm]	MD [mm]
≤ 2000	≤ 5
≤ 3500	≤ 7
> 3500	≤ 3 ‰

Feasible dimensions and tolerances of $N ext{-}Durance^*$ tubes & rollers*:

. 6.1.6.16							
	Outer Diameter [mm]	Wall Thickness [mm]	Max Length [mm]				
	-20	4	1000				
	21-30	5	2500				
	31-40	5	2800				
	41-50	5	3000				
	51-100	6	3000				
Tolerance	-2	-6	±2				

Maximum deflection MD of **N-Durance**® tubes & rollers:

Length [mm]	MD [mm]
≤ 2000	≤ 5
2001-3000	< 7

*Technical data, right of modification reserved.

Feasible dimensions and tolerances of $\textbf{CRYSTAR}^{\circ}$ tubes & rollers*:

	Outer Diameter [mm]	Wall Thickness [mm]	Max Length [mm]
	-20	4	1000
	21-30	5	2500
	31-40	5	2800
	41-50	5	3000
	51-60	6	3000
	61-70	6	3000
	71-80	6	3000
	81-90	6	3000
	91-100	6	3000
Tolerance	+1/-0,5	+3/-0,5	±2

Maximum deflection MD of CRYSTAR® tubes & rollers:

Length [mm]	MD [mm]
≤ 2000	≤ 5
2001-3000	≤ 7

CONTACT US

USA

Niagara Falls

+1 716 278 6233

Worcester

+1 508 795 5264

MIDDLE EAST & AFRICA

Dubai (UAE)

+971 4 8011800

EUROPE

Castellón (Spain)

+34 9647 303 90

Corsico (Mi), (Italy)

+39 0244 851

Prague (Czech Republic)

+42 0725 174 478

Rainford (United Kindom)

+44 1744 882 941

Rödental (Germany)

+49 9563 724 201

INDIA

Bangalore

+ 91 2676 612 085

Halol

+ 91 2676 612 085

PACIFIC

Melbourne (Australia)

+61 394 745 940

JAPAN

Nagova

+81 5619 708 08

CHINA

Dengfeng

+86 21 6489 999 3

Shanghai

+86 1811 633 835 7

ASIA

Seoul (Korea)

+82 2370 693 34

For more information: www.ceramicsrefractories.saint-gobain.com ceramics.refractories@saint-gobain.com

Follow us on:

in www.linkedin.com/company/saint-gobain-performance-ceramics-refractories

The information contained in this document is believed to be accurate and reliable but is provided without guarantee or warranty on the part of Saint-Gobain Performance Ceramics & Refractories. Process parameters and requirements can impact typical values and test methods. Further, nothing present herein should be interpreted as an authorization or inducement to practice any patented invention without an appropriate license. Saint-Gobain Performance Ceramics & Refractories Terms and Conditions apply to all purchases.

